Syllabus

All Materials, Lectures and Assignments (along with the deadlines) are provided here.

Text Book:

Various interesting and useful topics that will be touched during the course are discussed in the following textbooks.
  • Charu C. Aggarwal, Recommender Systems: The Textbook, First Edition, Springer, 2016.
  • Research Papers from Conferences like RecSys, Neurips, ACL, EACL, etc.
  • Materials and Chapters will be referred when required

Lectures

Event Date Lecture Suggested Readings Assignments and Deadline
Lecture 1 -- Topics: (no slides)
  • Formal introduction
  • Course details
  • Syllabus
Lecture 2 -- Topics: (slides)
  • Recommender landscape personalization, retrieval vs ranking, cold start, feedback loops.
Lecture 3 -- Topics: (slides)
  • Data & problem setup implicit vs explicit feedback; sessions; negatives; train/val/test splits.
Lecture 4 -- Topics: (slides)
  • Baselines popularity, recency, simple heuristics; why baselines are hard to beat
Lecture 5 -- Topics: (slides)
  • Baselines popularity, recency, simple heuristics; why baselines are hard to beat
Lecture 6 -- Topics: (slides)
  • Evaluation Precision@K/Recall@K/NDCG/MAP; offline vs online; leakage pitfalls
Lecture 7 -- Topics: (slides)
  • Evaluation Precision@K/Recall@K/NDCG/MAP; offline vs online; leakage pitfalls
Lecture 8 -- Topics: (slides)
  • Classical CF user-user/item-item similarity; cosine/pearson; scalability issues.
Lecture 9 -- Topics: (slides)
  • Classical CF user-user/item-item similarity; cosine/pearson; scalability issues.
Lecture 10 -- Topics: (slides)
  • Matrix factorization (MF) latent factors; SGD/ALS; regularization; implicit MF (BPR intuition)
Lecture 11 -- Topics: (slides)
  • Matrix factorization (MF) latent factors; SGD/ALS; regularization; implicit MF (BPR intuition)
Lecture 12 -- Topics: (slides)
  • Matrix factorization (MF) latent factors; SGD/ALS; regularization; implicit MF (BPR intuition)
Lecture 13 -- Topics: (slides)
  • Matrix factorization (MF) latent factors; SGD/ALS; regularization; implicit MF (BPR intuition)
Lecture 14 -- Topics: (slides)
  • Learning-to-rank basics pointwise/pairwise/listwise; negative sampling strategies
Lecture 15 -- Topics: (slides)
  • Learning-to-rank basics pointwise/pairwise/listwise; negative sampling strategies
Lecture 16 -- Topics: (slides)
  • Neural CF MLP interactions, embeddings, feature crosses; implementation
Lecture 17 -- Topics: (slides)
  • Neural CF MLP interactions, embeddings, feature crosses; implementation
Lecture 18 -- Topics: (slides)
  • Neural CF MLP interactions, embeddings, feature crosses; implementation
Lecture 19 -- Topics: (slides)
  • Neural CF MLP interactions, embeddings, feature crosses; implementation
Lecture 20 -- Topics: (slides)
  • Wide & Deep / DeepFM intuition combining memorization + generalization; structured features
-- -- (Feb 25) Last Date for Proposal Submission.
-- -- Mid Semester Exam Week Best of Luck.
Lecture 21 -- Topics: (slides)
  • Wide & Deep / DeepFM intuition combining memorization + generalization; structured features
Lecture 22 -- Topics: (slides)
  • Two-tower retrieval models dual encoders; approximate nearest neighbor; candidate generation
Lecture 23 -- Topics: (slides)
  • Two-tower retrieval models dual encoders; approximate nearest neighbor; candidate generation
Lecture 24 -- Topics: (slides)
  • Ranking models DNN rankers, context features; calibration; diversity constraints
Lecture 25 -- Topics: (slides)
  • Ranking models DNN rankers, context features; calibration; diversity constraints
Lecture 26 -- Topics: (slides)
  • Sequence recommenders I Markov chains → RNNs; session-based recs
Lecture 27 -- Topics: (slides)
  • Sequence recommenders I Markov chains → RNNs; session-based recs
Lecture 28 -- Topics: (slides)
  • Sequence recommenders II Transformers for rec (SASRec-style ideas); positional encoding for sessions
Lecture 29 -- Topics: (slides)
  • Sequence recommenders II Transformers for rec (SASRec-style ideas); positional encoding for sessions
Lecture 30 -- Topics: (slides)
  • Graph recommenders (intro) bipartite graphs, message passing intuition; when it helps
Lecture 31 -- Topics: (slides)
  • Graph recommenders (intro) bipartite graphs, message passing intuition; when it helps
Lecture 32 -- Topics: (slides)
  • Cold start strategies content-based, hybrid, metadata embeddings, zero-shot user modeling
-- -- (Mar 30) - Last Date of Mid Presentation.
Lecture 33 -- Topics: (slides)
  • Cold start strategies content-based, hybrid, metadata embeddings, zero-shot user modeling
Lecture 34 -- Topics: (slides)
  • Bias & fairness popularity bias, exposure bias, filter bubbles; debiasing ideas
Lecture 35 -- Topics: (slides)
  • Bias & fairness popularity bias, exposure bias, filter bubbles; debiasing ideas
Lecture 36 -- Topics: (slides)
  • Exploration & bandits epsilon-greedy, UCB, Thompson sampling; counterfactual logging basics
Lecture 37 -- Topics: (slides)
  • Serving & systems feature stores, ANN indexes, latency budgets; batch vs real-time features
Lecture 38 -- Topics: (slides)
  • Monitoring drift, feedback loops, A/B testing guardrails; metric dashboards
Lecture 39 -- Topics: (slides)
  • Capstone presentations full pipeline (retrieval + ranker) + evaluation report
Lecture 40 -- Topics: (slides)
  • Capstone presentations full pipeline (retrieval + ranker) + evaluation report
Lecture 41 -- Topics: (slides)
  • Wrap-up
Lecture 42 -- Topics: (slides)
  • Wrap-up
-- -- (Apl 30) Last Date of Codes Submission.
-- -- (Apl 30) Dead Line for Final Presentation Video Submission.
-- -- (Apl 30) Dead Line for Report Submission.
-- -- End Semester Exam Week Best of Luck.
Link Added on Last Date for Submission :