Syllabus

All Materials, Lectures and Assignments (along with the deadlines) are provided here.

Text Book:

Various interesting and useful topics that will be touched during the course are discussed in the following textbooks.
  • Research Papers from Conferences like ACL, EACL, etc.
  • Materials and Chapters will be referred when required

Lectures

Event Date Lecture Suggested Readings Assignments and Deadline
Lecture 1 -- Topics: (no slides)
  • Formal introduction
  • Course details
  • Syllabus
Lecture 2 -- Topics: (slides)
  • NLP overview + tasks classification, NER, QA, summarization; pipeline vs end-to-end.
Lecture 3 -- Topics: (slides)
  • Text preprocessing tokenization, normalization, stemming/lemmatization; pitfalls.
Lecture 4 -- Topics: (slides)
  • Language modeling basics n-grams, smoothing; perplexity; classical baselines.
Lecture 5 -- Topics: (slides)
  • Vector space models BoW/TF-IDF; cosine similarity; feature engineering.
Lecture 6 -- Topics: (slides)
  • Vector space models BoW/TF-IDF; cosine similarity; feature engineering.
Lecture 7 -- Topics: (slides)
  • Classical supervised NLP logistic regression/SVM; evaluation; error analysis.
Lecture 8 -- Topics: (slides)
  • Sequence labeling HMM/CRF intuition; BIO tagging for NER (conceptual + demo).
Lecture 9 -- Topics: (slides)
  • Word embeddings word2vec/GloVe intuition; subword (BPE); embedding algebra caveats
Lecture 10 -- Topics: (slides)
  • Word embeddings word2vec/GloVe intuition; subword (BPE); embedding algebra caveats
Lecture 11 -- Topics: (slides)
  • Neural NLP pre-transformer CNN/RNN/LSTM; attention idea; limitations.
Lecture 12 -- Topics: (slides)
  • Neural NLP pre-transformer CNN/RNN/LSTM; attention idea; limitations.
Lecture 13 -- Topics: (slides)
  • Neural NLP pre-transformer CNN/RNN/LSTM; attention idea; limitations.
Lecture 14 -- Topics: (slides)
  • Transformers I self-attention, positional encoding, layers; complexity; intuition.
Lecture 15 -- Topics: (slides)
  • Transformers I self-attention, positional encoding, layers; complexity; intuition.
Lecture 16 -- Topics: (slides)
  • Transformers II encoder vs decoder vs encoder-decoder; BERT vs GPT vs T5.
Lecture 17 -- Topics: (slides)
  • Transformers II encoder vs decoder vs encoder-decoder; BERT vs GPT vs T5.
Lecture 18 -- Topics: (slides)
  • Transformers II encoder vs decoder vs encoder-decoder; BERT vs GPT vs T5.
Lecture 19 -- Topics: (slides)
  • Pretraining objectives MLM, causal LM, span corruption; why pretraining helps.
Lecture 20 -- Topics: (slides)
  • Wrap-up before Mid Term Examination
-- -- (Feb 25) Last Date for Proposal Submission.
-- -- Mid Semester Exam Week Best of Luck.
Lecture 21 -- Topics: (slides)
  • Pretraining objectives MLM, causal LM, span corruption; why pretraining helps.
Lecture 22 -- Topics: (slides)
  • Fine-tuning & transfer classification/NER/QA fine-tuning; hyperparameters; PEFT (LoRA).
Lecture 23 -- Topics: (slides)
  • Fine-tuning & transfer classification/NER/QA fine-tuning; hyperparameters; PEFT (LoRA).
Lecture 24 -- Topics: (slides)
  • Prompting & in-context learning prompt patterns, few-shot, chain-of-thought (practical use).
Lecture 25 -- Topics: (slides)
  • Prompting & in-context learning prompt patterns, few-shot, chain-of-thought (practical use).
Lecture 26 -- Topics: (slides)
  • Instruction tuning + alignment SFT, RLHF/DPO overview; what alignment changes.
Lecture 27 -- Topics: (slides)
  • Instruction tuning + alignment SFT, RLHF/DPO overview; what alignment changes.
Lecture 28 -- Topics: (slides)
  • Evaluation accuracy/F1/ROUGE/BLEU, perplexity; human eval; robustness checks.
Lecture 29 -- Topics: (slides)
  • Evaluation accuracy/F1/ROUGE/BLEU, perplexity; human eval; robustness checks.
Lecture 30 -- Topics: (slides)
  • Evaluation accuracy/F1/ROUGE/BLEU, perplexity; human eval; robustness checks.
Lecture 31 -- Topics: (slides)
  • Retrieval-Augmented Generation (RAG) embeddings, chunking, retrieval, reranking; grounding
Lecture 32 -- Topics: (slides)
  • Retrieval-Augmented Generation (RAG) embeddings, chunking, retrieval, reranking; grounding
-- -- (Mar 30) - Last Date of Mid Presentation.
Lecture 33 -- Topics: (slides)
  • Retrieval-Augmented Generation (RAG) embeddings, chunking, retrieval, reranking; grounding
Lecture 34 -- Topics: (slides)
  • LLM systems context windows, caching, latency/cost; batching; tool calling overview.
Lecture 35 -- Topics: (slides)
  • LLM systems context windows, caching, latency/cost; batching; tool calling overview.
Lecture 36 -- Topics: (slides)
  • Hallucinations & reliability causes, mitigations; verification strategies; citations/attribution.
Lecture 37 -- Topics: (slides)
  • Hallucinations & reliability causes, mitigations; verification strategies; citations/attribution.
Lecture 38 -- Topics: (slides)
  • Safety/ethics bias, privacy, data leakage, prompt injection; safe deployment patterns.
Lecture 39 -- Topics: (slides)
  • Safety/ethics bias, privacy, data leakage, prompt injection; safe deployment patterns.
Lecture 40 -- Topics: (slides)
  • Capstone end-to-end mini-app (RAG QA bot / summarizer) + presentations.
Lecture 41 -- Topics: (slides)
  • Wrap-up
Lecture 42 -- Topics: (slides)
  • Wrap-up
-- -- (Apl 30) Last Date of Codes Submission.
-- -- (Apl 30) Dead Line for Final Presentation Video Submission.
-- -- (Apl 30) Dead Line for Report Submission.
-- -- End Semester Exam Week Best of Luck.
Link Added on Last Date for Submission :