Syllabus

All Materials, Lectures and Assignments (along with the deadlines) are provided here.

Text Book:

Various interesting and useful topics that will be touched during the course are discussed in the following textbooks.
  • Charu C. Aggarwal, Recommender Systems: The Textbook, First Edition, Springer, 2016.
  • Materials and Chapters will be referred when required

Lectures

Event Date Lecture Suggested Readings Assignments and Deadline
Lecture 1 -- Topics: (no slides)
  • Formal introduction
  • Course details
  • Syllabus
Lecture 2 -- Topics: (slides)
  • Intro recommendation tasks, retrieval vs ranking, feedback loops, goals (CTR/LTV).
Lecture 3 -- Topics: (slides)
  • Intro recommendation tasks, retrieval vs ranking, feedback loops, goals (CTR/LTV).
Lecture 4 -- Topics: (slides)
  • Data & logging implicit vs explicit feedback, sessions, exposure; dataset pitfalls
Lecture 5 -- Topics: (slides)
  • Data & logging implicit vs explicit feedback, sessions, exposure; dataset pitfalls
Lecture 6 -- Topics: (slides)
  • Baselines popularity/recency, co-occurrence, rule-based; strong baseline discipline
Lecture 7 -- Topics: (slides)
  • Baselines popularity/recency, co-occurrence, rule-based; strong baseline discipline
Lecture 8 -- Topics: (slides)
  • Evaluation Precision@K/Recall@K/NDCG/MAP; offline vs online; leakage
Lecture 9 -- Topics: (slides)
  • Evaluation Precision@K/Recall@K/NDCG/MAP; offline vs online; leakage
Lecture 10 -- Topics: (slides)
  • Content-based TF-IDF/item metadata; user profiles; cold start support
Lecture 11 -- Topics: (slides)
  • Content-based TF-IDF/item metadata; user profiles; cold start support
Lecture 12 -- Topics: (slides)
  • Memory-based CF user-user/item-item similarity; shrinkage; scalability
Lecture 13 -- Topics: (slides)
  • Memory-based CF user-user/item-item similarity; shrinkage; scalability
Lecture 14 -- Topics: (slides)
  • Matrix factorization latent factors, regularization; ALS/SGD; interpretability
Lecture 15 -- Topics: (slides)
  • Matrix factorization latent factors, regularization; ALS/SGD; interpretability
Lecture 16 -- Topics: (slides)
  • Implicit feedback learning BPR, weighted MF; negative sampling strategies
Lecture 17 -- Topics: (slides)
  • Implicit feedback learning BPR, weighted MF; negative sampling strategies
Lecture 18 -- Topics: (slides)
  • Hybrid recommenders mixing signals; feature engineering; stacking
Lecture 19 -- Topics: (slides)
  • Hybrid recommenders mixing signals; feature engineering; stacking
Lecture 20 -- Topics: (slides)
  • Learning-to-rank pointwise/pairwise/listwise; label design; metrics alignment
-- -- (Feb 25) Last Date for Proposal Submission.
-- -- Mid Semester Exam Week Best of Luck.
Lecture 21 -- Topics: (slides)
  • Learning-to-rank pointwise/pairwise/listwise; label design; metrics alignment
Lecture 22 -- Topics: (slides)
  • Deep recommenders I embeddings, Neural CF; feature crosses; training pitfalls
Lecture 23 -- Topics: (slides)
  • Deep recommenders I embeddings, Neural CF; feature crosses; training pitfalls
Lecture 24 -- Topics: (slides)
  • Two-tower retrieval dual encoder, ANN search, candidate generation vs ranker
Lecture 25 -- Topics: (slides)
  • Two-tower retrieval dual encoder, ANN search, candidate generation vs ranker
Lecture 26 -- Topics: (slides)
  • Ranking models wide&deep/DeepFM intuition; context features; calibration
Lecture 27 -- Topics: (slides)
  • Ranking models wide&deep/DeepFM intuition; context features; calibration
Lecture 28 -- Topics: (slides)
  • Sequential recommenders session-based rec, Markov→RNN→Transformer ideas
Lecture 29 -- Topics: (slides)
  • Sequential recommenders session-based rec, Markov→RNN→Transformer ideas
Lecture 30 -- Topics: (slides)
  • Graph-based recommenders (intro) user-item graph, message passing; when it helps
Lecture 31 -- Topics: (slides)
  • Graph-based recommenders (intro) user-item graph, message passing; when it helps
Lecture 32 -- Topics: (slides)
  • Cold start metadata, content, onboarding, zero-shot; multi-armed bandit exploration
-- -- (Mar 30) - Last Date of Mid Presentation.
Lecture 33 -- Topics: (slides)
  • Cold start metadata, content, onboarding, zero-shot; multi-armed bandit exploration
Lecture 34 -- Topics: (slides)
  • Bias & fairness popularity bias, exposure bias; debiasing evaluation
Lecture 35 -- Topics: (slides)
  • Bias & fairness popularity bias, exposure bias; debiasing evaluation
Lecture 36 -- Topics: (slides)
  • Exploration & bandits epsilon-greedy, UCB/TS; counterfactual evaluation basics
Lecture 37 -- Topics: (slides)
  • Exploration & bandits epsilon-greedy, UCB/TS; counterfactual evaluation basics
Lecture 38 -- Topics: (slides)
  • Serving & monitoring ANN indexes, latency budgets, drift, A/B tests guardrails
Lecture 39 -- Topics: (slides)
  • Serving & monitoring ANN indexes, latency budgets, drift, A/B tests guardrails
Lecture 40 -- Topics: (slides)
  • End-to-end pipeline + offline eval + deployment
Lecture 41 -- Topics: (slides)
  • Wrap-up
Lecture 42 -- Topics: (slides)
  • Wrap-up
-- -- (Apl 30) Last Date of Codes Submission.
-- -- (Apl 30) Dead Line for Final Presentation Video Submission.
-- -- (Apl 30) Dead Line for Report Submission.
-- -- End Semester Exam Week Best of Luck.
Link Added on Last Date for Submission :