| Lecture 1 |
-- |
Topics: (no slides)
- Formal introduction
- Course details
- Syllabus
|
|
|
| Lecture 2 |
-- |
Topics: (slides)
- Introductio to Asymptotics Big-O/Ω/Θ, growth rates, amortized idea; examples.
|
|
|
| Lecture 3 |
-- |
Topics: (slides)
- Intro + asymptotics Big-O/Ω/Θ, growth rates, amortized idea; examples.
|
|
|
| Lecture 4 |
-- |
Topics: (slides)
- Recurrences substitution, recursion tree, Master theorem; practice set.
|
|
|
| Lecture 5 |
-- |
Topics: (slides)
- Recurrences substitution, recursion tree, Master theorem; practice set.
|
|
|
| Lecture 6 |
-- |
Topics: (slides)
- Proof techniques induction, invariants, exchange argument; correctness templates
|
|
|
| Lecture 7 |
-- |
Topics: (slides)
- Proof techniques induction, invariants, exchange argument; correctness templates
|
|
|
| Lecture 8 |
-- |
Topics: (slides)
- Divide & conquer I merge sort, quicksort; partition; expected complexity
|
|
|
| Lecture 9 |
-- |
Topics: (slides)
- Divide & conquer I merge sort, quicksort; partition; expected complexity
|
|
|
| Lecture 10 |
-- |
Topics: (slides)
- Divide & conquer II binary search variants, selection (quickselect), closest pair (concept).
|
|
|
| Lecture 11 |
-- |
Topics: (slides)
- Divide & conquer II binary search variants, selection (quickselect), closest pair (concept).
|
|
|
| Lecture 12 |
-- |
Topics: (slides)
- Heaps & priority queues heap operations; heapsort; applications
|
|
|
| Lecture 13 |
-- |
Topics: (slides)
- Heaps & priority queues heap operations; heapsort; applications
|
|
|
| Lecture 14 |
-- |
Topics: (slides)
- Hashing hash tables, collision handling, universal hashing intuition
|
|
|
| Lecture 15 |
-- |
Topics: (slides)
- Hashing hash tables, collision handling, universal hashing intuition
|
|
|
| Lecture 16 |
-- |
Topics: (slides)
- Balanced search trees (overview) AVL/Red-black intuition; order statistics trees idea
|
|
|
| Lecture 17 |
-- |
Topics: (slides)
- Balanced search trees (overview) AVL/Red-black intuition; order statistics trees idea
|
|
|
| Lecture 18 |
-- |
Topics: (slides)
- Greedy I activity selection, interval scheduling; proving greedy (exchange).
|
|
|
| Lecture 19 |
-- |
Topics: (slides)
- Greedy I activity selection, interval scheduling; proving greedy (exchange).
|
|
|
| Lecture 20 |
-- |
Topics: (slides)
- Greedy II Huffman coding, minimum spanning tree (Kruskal/Prim) correctness
|
|
|
|
-- |
-- |
(Feb 25) Last Date for Proposal Submission. |
|
|
-- |
-- |
Mid Semester Exam Week |
Best of Luck.
|
| Lecture 21 |
-- |
Topics: (slides)
- Greedy II Huffman coding, minimum spanning tree (Kruskal/Prim) correctness
|
|
|
| Lecture 22 |
-- |
Topics: (slides)
- Dynamic programming I DP templates; memoization vs tabulation; knapsack
|
|
|
| Lecture 23 |
-- |
Topics: (slides)
- Dynamic programming I DP templates; memoization vs tabulation; knapsack
|
|
|
| Lecture 24 |
-- |
Topics: (slides)
- Dynamic programming II LIS, edit distance; state design and optimization tricks
|
|
|
| Lecture 25 |
-- |
Topics: (slides)
- Dynamic programming II LIS, edit distance; state design and optimization tricks
|
|
|
| Lecture 26 |
-- |
Topics: (slides)
- Graph algorithms I BFS/DFS, topological sort; DAG shortest paths
|
|
|
| Lecture 27 |
-- |
Topics: (slides)
- Graph algorithms I BFS/DFS, topological sort; DAG shortest paths
|
|
|
| Lecture 28 |
-- |
Topics: (slides)
- Graph algorithms II shortest paths (Dijkstra, Bellman–Ford); negative cycles
|
|
|
| Lecture 29 |
-- |
Topics: (slides)
- Graph algorithms II shortest paths (Dijkstra, Bellman–Ford); negative cycles
|
|
|
| Lecture 30 |
-- |
Topics: (slides)
- Graph algorithms III all-pairs (Floyd–Warshall); applications.
|
|
|
| Lecture 31 |
-- |
Topics: (slides)
- Graph algorithms III all-pairs (Floyd–Warshall); applications.
|
|
|
| Lecture 32 |
-- |
Topics: (slides)
- Network flow max flow/min cut; Ford–Fulkerson/Edmonds–Karp; bipartite matching
|
|
|
|
-- |
-- |
(Mar 30) - Last Date of Mid Presentation. |
|
| Lecture 33 |
-- |
Topics: (slides)
- Network flow max flow/min cut; Ford–Fulkerson/Edmonds–Karp; bipartite matching
|
|
|
| Lecture 34 |
-- |
Topics: (slides)
- NP-completeness P vs NP, reductions, NP-complete examples; what it means practically
|
|
|
| Lecture 35 |
-- |
Topics: (slides)
- NP-completeness P vs NP, reductions, NP-complete examples; what it means practically
|
|
|
| Lecture 36 |
-- |
Topics: (slides)
- Approximation & heuristics vertex cover/knapsack ideas; PTAS intuition; local search
|
|
|
| Lecture 37 |
-- |
Topics: (slides)
- Approximation & heuristics vertex cover/knapsack ideas; PTAS intuition; local search
|
|
|
| Lecture 38 |
-- |
Topics: (slides)
- Randomized algorithms randomized quicksort, hashing; Monte Carlo vs Las Vegas
|
|
|
| Lecture 39 |
-- |
Topics: (slides)
- Randomized algorithms randomized quicksort, hashing; Monte Carlo vs Las Vegas
|
|
|
| Lecture 40 |
-- |
Topics: (slides)
- Mixed paradigm problems and Solution
|
|
|
| Lecture 41 |
-- |
Topics: (slides)
|
|
|
| Lecture 42 |
-- |
Topics: (slides)
|
|
|
|
-- |
-- |
(Apl 30) Last Date of Codes Submission. |
|
|
-- |
-- |
(Apl 30) Dead Line for Final Presentation Video Submission. |
|
|
-- |
-- |
(Apl 30) Dead Line for Report Submission. |
|
|
-- |
-- |
End Semester Exam Week |
Best of Luck.
|
|
Link Added on Last Date for Submission :
|